Solar Panels and Electrical Cars: Can I Use Solar as an EV charger? Solar panels and electrified cars are a match made in heaven – when you install a solar energy system on your home, you can use it to both power your home and charge your electrified car for emissions-free transportation. The cost of […]
iPhone nine latest rumours: Release date, UK price, features & specs
Contents
What’s the future of the smartphone? When will the iPhone nine be released in the UK, and how different will it look from today’s smartphones in terms of features, design and tech specs?
At Macworld we spend a lot of time wondering about the next generation of Apple devices. (If you share our curiosity, take a look at our iPhone 8, iPad mini Five, iPad Pro Two, Apple Observe three and Apple Car rumour articles, and our What will Apple do in 2017? story.) But sometimes it pays to take a step back and think about the longer term, and the fatter picture. Where is technology going? What does the future hold? And what will Apple’s smartphones look like in 2018, in 2020, in two thousand thirty and beyond?
One thing we strongly suspect is that future iPhones will have unprecedentedly large screens. Reports point to Five.85in and 6.46in displays on the iPhone 9.
In this article we discuss some of the paths smartphone technology could take in the coming years, kicking off with the iPhone 9, which by current trends ought to show up somewhere inbetween two thousand eighteen and 2020.
As we stir further into the future our predictions will by necessity become more speculative, and many of these paths will no doubt turn out to be blind alleys. But we’re glad to put on our future goggles and make some predictions about trends we’re expecting in the next few years. If you want to know what kind of iPhone you’ll be brandishing in the future, read on.
Battery & charging developments
Again and again the UK Tech Weekly Podcast comebacks to the topic of ‘peak smartphone’: the idea that the smartphone’s golden period of rapid technological advances and broad experiential differences (inbetween one generation and the next, or inbetween one manufacturer and another) is now over.
The smartphone has become commoditised, and there are only puny, iterative differences inbetween the phone that just launched and the one you bought last year – hence less incentive to upgrade. Smartphones are now essentially ‘good enough’.
Well, maybe. Perhaps the greatest potential growth area – yet, for various counterintuitive reasons, one of the most neglected thus far – is battery life. Battery tech keeps getting better, but smartphone makers (and Apple is just as guilty of this as anyone) keep cramming more power-hungry components into a slimmer chassis so the battery life finishes up staying toughly the same.
In the next few years, we suspect, battery life is going to become more of a priority for phone makers and consumers. Partly this is because phones are now about as slender and rapid as anyone could ever want; but partly it’s because some cool battery tech developments are beginning to come within the reach of mobile consumer budgets.
Below we look at some of the fresh technologies coming to batteries and charging. Read more: How to improve iPhone battery life
Long-range wireless charging
It’s widely expected that the late-2017 iPhones (whether iPhone 7s or iPhone 8) will feature a limited version of wireless charging – the kind, commonplace with today’s technology’s standards, where you still have to physically place the device on a charging mat. It’s convenient, but not exactly a gamechanger, since the two elements have to be in contact.
The real advance everyone is looking forward to is long-range wireless charging. This is unlikely to make an appearance in 2017’s iPhones, but could be one for the long term.
Bloomberg reckons Apple is working on longer-range wireless charging, potentially charging at a distance of about one metre using near-field magnetic resonance. And some cryptic comments from the CEO of a charging company suggest Apple may be planning something even more ambitious.
Steve Rizzone, CEO of Energous, spoke to The Brink before CES two thousand seventeen and dropped some major hints about an sensational “key strategic partnership” that the company signed a duo of years back and which has delayed the launch of its wireless charging tech. which has a range of fifteen feet.
“That ‘key’ playmate is suspected to be Apple,” observes The Brink, “and Energous – however declining to state its fucking partner’s name – is certainly glad to fuel the speculation. Rizzone says the partnership is with ‘one of the largest consumer electronic companies in the world. I cannot tell you who it is, but I can virtual assure that you have products from this company on your person, sitting on your desk, or at home.'”
Energous isn’t the only company working on long-range wireless charging. In February two thousand seventeen it was reported that Disney Research have come up with a fresh method for wirelessly transmitting power across a room: users would be able to charge electronic devices anywhere in that room, much as they connect to WiFi with current technology.
“In this work, we’ve demonstrated room-scale wireless power,” said associate lab director Alanson Sample, “but there’s no reason we couldn’t scale this down to the size of a fucktoy chest or up to the size of a warehouse.”
LG to manufacture L-shaped ‘iPhone 9’ batteries
Korea Economic Daily claims that Apple has chosen LG Chem as the special supplier for batteries that will be featured in the next-generation iPhone, due out in 2018. Citing an unnamed source, the report claims that LG has invested “hundreds of billions” in battery manufacturing facilities and that it’ll be ready to begin full-scale production in early 2018, just in time for the ‘iPhone 9’.
That’s not all, either; the report also claims that Apple’s next-generation iPhone will adopt a ‘leaned’ battery module shaped like the letter ‘L’. If true, it’s the very first time that Apple has stepped away from the rectangular lithium-ion batteries featured on every iPhone thus far. It’s said that the optimised form of the battery maximises internal space and also boosts charging speeds, two features that the iPhone despairingly needs.
Stacked battery cells
One persistent rumour holds that Apple will take the battery tech it developed for the original 12-inch MacBook (and retained for the two thousand sixteen version) – whereby contoured, layered battery units are stacked inwards the chassis in order to take up every possible inch of space – and use these to squeeze more battery capacity inwards the immovable or even diminished volume that will be available in future iPhones.
Apple could even, thanks to the fresh technology, make more radical switches to the overall design of the iPhone, because its engineers would no longer to base their work on a motionless battery form. Albeit the smartphone is such a mature market now that it would take a courageous manufacturer to switch its essential form – a bit like a mad microwave designer inventing one that’s spherical.
Lithium-air batteries
The capacity and efficiency of batteries is sure to increase over the next few years, and may do so dramatically if lithium-oxygen cells (also known as lithium-air) become a reality. As a Nature explore (you’ll need to pay to read the utter article) explains, Li–O2 batteries suggest theoretically far higher lifetimes than the lithium-ion equivalents presently favoured in mobile devices – maybe as much as five times as much, albeit technological issues remain.
But we’re still thinking in terms of conventional battery principles: batteries than need to be charged up from a mains supply, and then run down, and then need to be charged up again.
Mobility charging
A different treatment is suggested by technologies such as movement charging, a principle that has been used in numerous witnesses going back many years and was reportedly considered by Apple when putting together the very first Apple Observe.
It uses kinetic energy from your own movements to charge up a battery cell. The traditional model would be for a wristwatch to corset the power of your arm swinging back and forward via the day, but similar methods have been used by wearable phone chargers that generate sufficient power in this way to give an extra hour of life to the average phone from a mere, er, Five,000 steps.
Okay, so the tech needs improvement to achieve mass-market acceptance, and it would be better still if technology of this kind could be integrated into the bod of the phone itself (it’s also vital for it to be able to collect a worthwhile amount of power from the smaller-scale movements experienced by a phone in a pocket or handbag rather than on the end of an arm). But it’s an appealingly sustainable way of collecting some of that energy you’re otherwise wasting on things like ‘moving from one place to another’ and ‘getting fit’.
Solar
A similar technology category that seems likely in the foreseeable future to supplement rather than supplant traditional battery-charging methods is solar power. Sunpartner Technologies has developed a lightweight skin/case that wraps around a mobile device and collects energy from light that falls on it. This is designed to work with both indoor and natural light, but is obviously better with the latter; in the right circumstances the tech could add some ten to fifteen percent to battery life.
Apple, of course, has been committing itself to a greener treatment for some time now, and a patent awarded in two thousand fifteen demonstrates this strategy in act.
The patent suggests that Apple is planning to build solar cells underneath the touchscreen on smartphones in future. The panel would recharge during the day and you wouldn’t need to buttplug your phone into the socket any more. Good for the planet, convenient for us.
Solar clothing
So much for solar cells on your phone itself. But that’s a relatively puny area for collecting energy. What about the clothed surface area on your bod?
University researchers have developed ‘wise fibres’ that can be used to create clothing that collects and stores solar energy via the day, then recharge portable devices that are running low on power. The fibres contain a dye-sensitised solar cell and a fibre supercapacitor, and can be cut and tailored without disrupting the operation of the energy collection process.
“Energy harvesting is significant,” said Paul Weiss, editor-in-chief of ACS Nano, to Mashable.
“Will clothing be a significant contributor to the power we acquire and use? We do not know yet. But as a field, we are exploring these ideas in addition to addressing the question of ‘how’ energy harvesting might work.”
There remain obstacles to overcome before solar clothing drops into the mainstream; for one thing, the dye used in this particular execution of the concept is environmentally unfriendly, according to the research team, containing potentially dangerous volatile organic compounds. The textile also isn’t waterproof.
But give it a few years and we could all be wearing the stuff. Rigoberto Advincula, a professor of macromolecular science at Case Western Reserve University in Cleveland, estimated that the very first commercial product using this textile device could become available in about the next five years – most likely beginning with military and outdoors applications.
Recycling a phone’s wasted energy
While we’re on the subject of energy-harvesting, technology exists right now that can recapture energy emitted from your phone in the form of radio swings (the wasted ones, not the ones essential to communication) and then feed it back into the battery. This isn’t a long-term solution: some energy will inevitably be lost through emitted sways alone, and you’ve got all the power being used running the internal components and lighting up the screen, among other issues. But it means your battery runs down slower – twenty five to thirty percent, the makers say.
These three in their present form – niche, semi-experimental, relatively costly, non-integrated, suggesting significant but not experience-changing increases to battery life and just generally a bit of a faff – are not enormously appealing to the average smartphone holder. But if we leap ahead ten years, maybe less, imagine an iPhone with all three (and similar related tech) built discreetly into the case: harvesting energy from your bodily movements, from ambient light, and from the phone’s own emitted radio sways. To the extent that battery life ceases to be a concern – to the extent, perhaps, where mobile batteries become self-sustaining. What a thought.
We are indebted for the help we gained when writing the above thoughts to Technology Review’s helpful summary of the future of battery technology.
Self-healing battery tech
We’re witnessing lots of titillating breakthroughs in the field of battery technology. Most relate to more efficient and environmentally friendly ways of charging a battery. One of the weirdest concentrates on another aspect entirely: mending a battery cell after it gets violated.
Researchers at the University of California, led by Amay Bandodkar, have created working examples of batteries containing magnetised particles that pull themselves back together after being snapped into two chunks as a form of makeshift self-healing. (You can read the examine here.)
And the principle isn’t limited to batteries: the researchers have also tested self-healing circuits and sensors.
Could a future smartphone use this development to mend itself after a catastrophic breakage? Most likely not, albeit some version of it, a long way down the line, could make the internals of our consumer electronics better able to carry on working after suffering serious harm. (At present the healing process is more of a improvised workaround than a long-term fix.) The most likely applications, certainly in the brief to medium term, lie in the field of low-cost electronic wearables.
Supercapacitor batteries ‘that charge in seconds and last for a week’
A team of researchers at the University of Central Florida have come up with a little battery, based on supercapacitor technology, which charges much swifter, lasts longer inbetween charges and has a far longer lifespan that the batteries presently used in smartphones around the world.
Scientists report that the little battery needs to be charged for only a few seconds and will then last for days. And whereas typical lithium-ion batteries display deteriorating spectacle after three hundred to five hundred total charges, this battery is good for 30,000 charges.
Nitin Choudhary, a member of the research term, said that if you substituted smartphone batteries with the supercapacitors, “you could charge your mobile phone in a few seconds and you wouldn’t need to charge it again for over a week”.
The researchers stressed that the technology is not yet close to commercial applications. “But this is a proof-of-concept demonstration and our studies demonstrate there are very high impacts for many technologies,” said Yeonwoong Jung, an assistant professor with joint appointments at the NanoScience Technology Centre and the Materials Science and Engineering Department.
All-solid-state Lithium-ion battery cells
A University of Texas team led by 94-year-old John Goodenough has developed what has been coined as an “all-solid-state” lithium-ion battery cell. What does that mean to us at home? Essentially, batteries developed using the fresh technology should be non-combustable and have a longer battery life than current batteries while boasting much quicker rates of charge and discharge.
How? The fresh technology uses glass electrolyte instead of a liquid solution, essentially eliminating the metal whiskers inwards batteries that bridges the gaps inbetween positive and negative plates when a cell is charged too quickly. The metal whiskers are usually the cause of battery shorting, along with fires and even explosions. The glass greatly increases the energy density of the battery with one thousand two hundred cycles on a cell with no influence on battery life, and will still work down to -20 degrees celsius.
The team has noted that the technology is scalable to almost all kinds of applications, from use in iPhones or MacBooks to powering electrified cars or being used in Tesla’s PowerWall battery. According to the University of Texas Office of Technology Commercialization, it’s actively negotiating license agreements with numerous companies in the battery industry, leading us to believe that Apple may feature the fresh battery tech in its products in the next few years.
IPhone nine News: UK Price, Release Date, Features – Tech Specs – Macworld UK
iPhone nine latest rumours: Release date, UK price, features & specs
Contents
What’s the future of the smartphone? When will the iPhone nine be released in the UK, and how different will it look from today’s smartphones in terms of features, design and tech specs?
At Macworld we spend a lot of time wondering about the next generation of Apple devices. (If you share our curiosity, take a look at our iPhone 8, iPad mini Five, iPad Pro Two, Apple See three and Apple Car rumour articles, and our What will Apple do in 2017? story.) But sometimes it pays to take a step back and think about the longer term, and the fatter picture. Where is technology going? What does the future hold? And what will Apple’s smartphones look like in 2018, in 2020, in two thousand thirty and beyond?
One thing we strongly suspect is that future iPhones will have unprecedentedly large screens. Reports point to Five.85in and 6.46in displays on the iPhone 9.
In this article we discuss some of the paths smartphone technology could take in the coming years, beginning with the iPhone 9, which by current trends ought to show up somewhere inbetween two thousand eighteen and 2020.
As we stir further into the future our predictions will by necessity become more speculative, and many of these paths will no doubt turn out to be blind alleys. But we’re glad to put on our future goggles and make some predictions about trends we’re expecting in the next few years. If you want to know what kind of iPhone you’ll be brandishing in the future, read on.
Battery & charging developments
Again and again the UK Tech Weekly Podcast comebacks to the topic of ‘peak smartphone’: the idea that the smartphone’s golden period of rapid technological advances and broad experiential differences (inbetween one generation and the next, or inbetween one manufacturer and another) is now over.
The smartphone has become commoditised, and there are only petite, iterative differences inbetween the phone that just launched and the one you bought last year – hence less incentive to upgrade. Smartphones are now essentially ‘good enough’.
Well, maybe. Perhaps the greatest potential growth area – yet, for various counterintuitive reasons, one of the most neglected thus far – is battery life. Battery tech keeps getting better, but smartphone makers (and Apple is just as guilty of this as anyone) keep cramming more power-hungry components into a slimmer chassis so the battery life completes up staying toughly the same.
In the next few years, we suspect, battery life is going to become more of a priority for phone makers and consumers. Partly this is because phones are now about as slender and rapid as anyone could ever want; but partly it’s because some cool battery tech developments are kicking off to come within the reach of mobile consumer budgets.
Below we look at some of the fresh technologies coming to batteries and charging. Read more: How to improve iPhone battery life
Long-range wireless charging
It’s widely expected that the late-2017 iPhones (whether iPhone 7s or iPhone 8) will feature a limited version of wireless charging – the kind, commonplace with today’s technology’s standards, where you still have to physically place the device on a charging mat. It’s convenient, but not exactly a gamechanger, since the two elements have to be in contact.
The real advance everyone is looking forward to is long-range wireless charging. This is unlikely to make an appearance in 2017’s iPhones, but could be one for the long term.
Bloomberg reckons Apple is working on longer-range wireless charging, potentially charging at a distance of about one metre using near-field magnetic resonance. And some cryptic comments from the CEO of a charging company suggest Apple may be planning something even more ambitious.
Steve Rizzone, CEO of Energous, spoke to The Edge before CES two thousand seventeen and dropped some major hints about an off the hook “key strategic partnership” that the company signed a duo of years back and which has delayed the launch of its wireless charging tech. which has a range of fifteen feet.
“That ‘key’ playmate is suspected to be Apple,” observes The Edge, “and Energous – tho’ declining to state its playmate’s name – is certainly blessed to fuel the speculation. Rizzone says the partnership is with ‘one of the largest consumer electronic companies in the world. I cannot tell you who it is, but I can virtual ensure that you have products from this company on your person, sitting on your desk, or at home.'”
Energous isn’t the only company working on long-range wireless charging. In February two thousand seventeen it was reported that Disney Research have come up with a fresh method for wirelessly transmitting power via a room: users would be able to charge electronic devices anywhere in that room, much as they connect to WiFi with current technology.
“In this work, we’ve demonstrated room-scale wireless power,” said associate lab director Alanson Sample, “but there’s no reason we couldn’t scale this down to the size of a fucktoy chest or up to the size of a warehouse.”
LG to manufacture L-shaped ‘iPhone 9’ batteries
Korea Economic Daily claims that Apple has chosen LG Chem as the off the hook supplier for batteries that will be featured in the next-generation iPhone, due out in 2018. Citing an unnamed source, the report claims that LG has invested “hundreds of billions” in battery manufacturing facilities and that it’ll be ready to begin full-scale production in early 2018, just in time for the ‘iPhone 9’.
That’s not all, either; the report also claims that Apple’s next-generation iPhone will adopt a ‘arched’ battery module shaped like the letter ‘L’. If true, it’s the very first time that Apple has stepped away from the rectangular lithium-ion batteries featured on every iPhone thus far. It’s said that the optimised form of the battery maximises internal space and also boosts charging speeds, two features that the iPhone despairingly needs.
Stacked battery cells
One persistent rumour holds that Apple will take the battery tech it developed for the original 12-inch MacBook (and retained for the two thousand sixteen version) – whereby contoured, layered battery units are stacked inwards the chassis in order to take up every possible inch of space – and use these to squeeze more battery capacity inwards the immobilized or even diminished volume that will be available in future iPhones.
Apple could even, thanks to the fresh technology, make more radical switches to the overall design of the iPhone, because its engineers would no longer to base their work on a stationary battery form. Albeit the smartphone is such a mature market now that it would take a plucky manufacturer to switch its essential form – a bit like a mad microwave designer inventing one that’s spherical.
Lithium-air batteries
The capacity and efficiency of batteries is sure to increase over the next few years, and may do so dramatically if lithium-oxygen cells (also known as lithium-air) become a reality. As a Nature investigate (you’ll need to pay to read the total article) explains, Li–O2 batteries suggest theoretically far higher lifetimes than the lithium-ion equivalents presently favoured in mobile devices – maybe as much as five times as much, albeit technological issues remain.
But we’re still thinking in terms of conventional battery principles: batteries than need to be charged up from a mains supply, and then run down, and then need to be charged up again.
Movement charging
A different treatment is suggested by technologies such as movability charging, a principle that has been used in numerous sees going back many years and was reportedly considered by Apple when putting together the very first Apple Observe.
It uses kinetic energy from your own movements to charge up a battery cell. The traditional model would be for a wristwatch to corset the power of your arm swinging back and forward via the day, but similar methods have been used by wearable phone chargers that generate sufficient power in this way to give an extra hour of life to the average phone from a mere, er, Five,000 steps.
Okay, so the tech needs improvement to achieve mass-market acceptance, and it would be better still if technology of this kind could be integrated into the bod of the phone itself (it’s also vital for it to be able to collect a worthwhile amount of power from the smaller-scale movements experienced by a phone in a pocket or handbag rather than on the end of an arm). But it’s an appealingly sustainable way of collecting some of that energy you’re otherwise wasting on things like ‘moving from one place to another’ and ‘getting fit’.
Solar
A similar technology category that seems likely in the foreseeable future to supplement rather than supplant traditional battery-charging methods is solar power. Sunpartner Technologies has developed a lightweight skin/case that wraps around a mobile device and collects energy from light that falls on it. This is designed to work with both indoor and natural light, but is obviously better with the latter; in the right circumstances the tech could add some ten to fifteen percent to battery life.
Apple, of course, has been committing itself to a greener treatment for some time now, and a patent awarded in two thousand fifteen demonstrates this strategy in activity.
The patent suggests that Apple is planning to build solar cells underneath the touchscreen on smartphones in future. The panel would recharge during the day and you wouldn’t need to buttplug your phone into the socket any more. Good for the planet, convenient for us.
Solar clothing
So much for solar cells on your phone itself. But that’s a relatively puny area for collecting energy. What about the clothed surface area on your figure?
University researchers have developed ‘wise fibres’ that can be used to create clothing that collects and stores solar energy via the day, then recharge portable devices that are running low on power. The fibres contain a dye-sensitised solar cell and a fibre supercapacitor, and can be cut and tailored without disrupting the operation of the energy collection process.
“Energy harvesting is significant,” said Paul Weiss, editor-in-chief of ACS Nano, to Mashable.
“Will clothing be a significant contributor to the power we acquire and use? We do not know yet. But as a field, we are exploring these ideas in addition to addressing the question of ‘how’ energy harvesting might work.”
There remain obstacles to overcome before solar clothing drops into the mainstream; for one thing, the dye used in this particular execution of the concept is environmentally unfriendly, according to the research team, containing potentially dangerous volatile organic compounds. The textile also isn’t waterproof.
But give it a few years and we could all be wearing the stuff. Rigoberto Advincula, a professor of macromolecular science at Case Western Reserve University in Cleveland, estimated that the very first commercial product using this textile device could become available in about the next five years – most likely beginning with military and outdoors applications.
Recycling a phone’s wasted energy
While we’re on the subject of energy-harvesting, technology exists right now that can recapture energy emitted from your phone in the form of radio flaps (the wasted ones, not the ones essential to communication) and then feed it back into the battery. This isn’t a long-term solution: some energy will inevitably be lost through emitted swings alone, and you’ve got all the power being used running the internal components and lighting up the screen, among other issues. But it means your battery runs down slower – twenty five to thirty percent, the makers say.
These three in their present form – niche, semi-experimental, relatively costly, non-integrated, suggesting significant but not experience-changing increases to battery life and just generally a bit of a faff – are not enormously appealing to the average smartphone holder. But if we hop ahead ten years, maybe less, imagine an iPhone with all three (and similar related tech) built discreetly into the case: harvesting energy from your bodily movements, from ambient light, and from the phone’s own emitted radio flaps. To the extent that battery life ceases to be a concern – to the extent, perhaps, where mobile batteries become self-sustaining. What a thought.
We are indebted for the help we gained when writing the above thoughts to Technology Review’s helpful summary of the future of battery technology.
Self-healing battery tech
We’re eyeing lots of arousing breakthroughs in the field of battery technology. Most relate to more efficient and environmentally friendly ways of charging a battery. One of the weirdest concentrates on another aspect entirely: mending a battery cell after it gets violated.
Researchers at the University of California, led by Amay Bandodkar, have created working examples of batteries containing magnetised particles that pull themselves back together after being snapped into two lumps as a form of makeshift self-healing. (You can read the investigate here.)
And the principle isn’t limited to batteries: the researchers have also tested self-healing circuits and sensors.
Could a future smartphone use this development to mend itself after a catastrophic breakage? Most likely not, albeit some version of it, a long way down the line, could make the internals of our consumer electronics better able to carry on working after suffering serious harm. (At present the healing process is more of a improvised workaround than a long-term fix.) The most likely applications, certainly in the brief to medium term, lie in the field of low-cost electronic wearables.
Supercapacitor batteries ‘that charge in seconds and last for a week’
A team of researchers at the University of Central Florida have come up with a lil’ battery, based on supercapacitor technology, which charges much swifter, lasts longer inbetween charges and has a far longer lifespan that the batteries presently used in smartphones around the world.
Scientists report that the little battery needs to be charged for only a few seconds and will then last for days. And whereas typical lithium-ion batteries display deteriorating spectacle after three hundred to five hundred utter charges, this battery is good for 30,000 charges.
Nitin Choudhary, a member of the research term, said that if you substituted smartphone batteries with the supercapacitors, “you could charge your mobile phone in a few seconds and you wouldn’t need to charge it again for over a week”.
The researchers stressed that the technology is not yet close to commercial applications. “But this is a proof-of-concept demonstration and our studies display there are very high impacts for many technologies,” said Yeonwoong Jung, an assistant professor with joint appointments at the NanoScience Technology Centre and the Materials Science and Engineering Department.
All-solid-state Lithium-ion battery cells
A University of Texas team led by 94-year-old John Goodenough has developed what has been coined as an “all-solid-state” lithium-ion battery cell. What does that mean to us at home? Essentially, batteries developed using the fresh technology should be non-combustable and have a longer battery life than current batteries while boasting much quicker rates of charge and discharge.
How? The fresh technology uses glass electrolyte instead of a liquid solution, essentially eliminating the metal whiskers inwards batteries that bridges the gaps inbetween positive and negative plates when a cell is charged too quickly. The metal whiskers are usually the cause of battery shorting, along with fires and even explosions. The glass greatly increases the energy density of the battery with one thousand two hundred cycles on a cell with no influence on battery life, and will still work down to -20 degrees celsius.
The team has noted that the technology is scalable to almost all kinds of applications, from use in iPhones or MacBooks to powering electrified cars or being used in Tesla’s PowerWall battery. According to the University of Texas Office of Technology Commercialization, it’s actively negotiating license agreements with numerous companies in the battery industry, leading us to believe that Apple may feature the fresh battery tech in its products in the next few years.